



Coronagraph Design and Metrics

A.J. Riggs

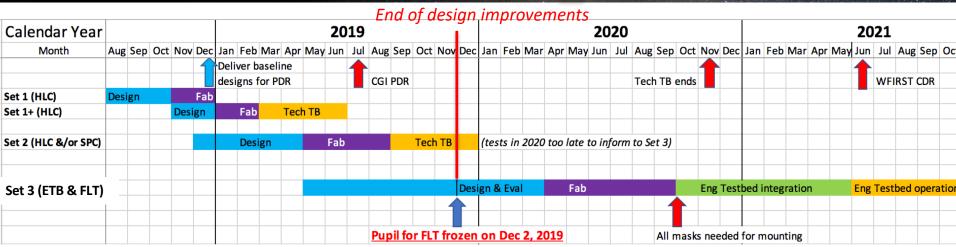
Jet Propulsion Laboratory, California Institute of Technology

WFIRST FSWG Meeting #8
December 4, 2018

The decision to implement the WFIRST mission will not be finalized until NASA's completion of the National Environmental Policy Act (NEPA) process. This document is being made available for information purposes only.

© 2018 California Institute of Technology. Government sponsorship acknowledged.

Outline


NASA

- 1. Timeline
- 2. Baseline Designs
- 3. Priorities
- 4. Merit Functions

Timeline

3 Mask Design Cycles Remaining


1. Test new fab method of HLC masks

- Last chance for big changes requiring HCIT verification
- 2. Test new mask features or combos
- 3. Final Masks: for ETB and FLT
- 12 months left total for all improvements to CGI coronagraph design process
 - Engineering Testbed (ETB) required to have same exact mask designs as FLT.
 - > ETB masks needed for mounting & testing months before ETB is built.
- 5 months left to get new mask features or combos (for Set 2)
 - Time includes designing and modeling.
 - > After 6 months, wouldn't get testbed results in time to inform ETB+FLT designs
- Remainder for improving design SW and algorithms (before Set 3)

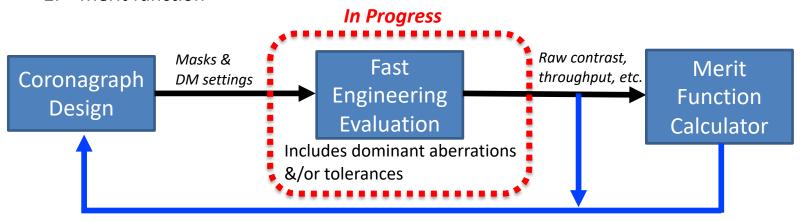
- Phase B designs to be baselined this month
- Phase B baseline will have <u>same three modes</u> as before
 - HLC for Narrow FOV
 - SPC for IFS
 - 3. SPC for Wide FOV
 - Not enough data to support switching to HLC for IFS at this time.

Priorities

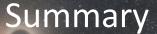
Available Coronagraph Elements:

- 2 Deformable Mirrors (DMs)
- Shaped pupil (SP)
- Focal plane mask (FPM)
- Lyot stop (LS)

Top Priorities:


- 1. Make wavefront control easier for HLC
 - How? More complicated FPM for less DM effort
- 2. Improve spectrograph performance
 - higher throughput and/or 360° FOV
 - Possible directions?
 - **Switch to HLC** (increase to >=15% bandwidth)
 - Hybrid SPC
- Develop merit functions and evaluation procedures.
 - Needed to declare new designs better/worse and viable/unviable.

Merit Functions and Evaluation



- Most remaining performance gains will be from trading something for something else.
- Designers need a fast merit function calculator to see if we made performance better/worse/same. Requires:
 - 1. Evaluation evaluation
 - Merit function

- Engineering evaluation:
 - Procedure to be finalized this Thursday.
- Merit functions by mode:
 - 1. Narrow FOV Imager: Flux ratio noise (FRN). Calculator coming from SE.
 - 2. IFS: Flux ratio noise (FRN). Calculator coming from SE.
 - 3. Wide FOV Imager: TBD combo of throughput, contrast, and encircled energy

- In last 12 months of coronagraph design
- No major changes to 3 baselined modes for PDR/Phase B
- Better designs still being investigated. One more design+fab+testing round next summer.
- For design comparisons, evaluation code and merit function calculators being developed.
 - Action item for SITs: merit function needed for disk imaging

Extra Slides

Team Member	Institution	Roles in FY19
A.J. Riggs	JPL	Schedule, budget, hybrid design R&D, software development, SPC design
Dwight Moody	JPL	HLC R&D
Jessica Gersh-Range	Princeton	SPC trade studies, hybrid design R&D
Jorge Llop-Sayson	Caltech	HLC trade studies, hybrid design R&D
Erkin Sidick	JPL	Design algorithms, LOWFS modeling
Navtej Saini	JPL	Software development

Main tasks this fiscal year:

- 1. Hybrid design R&D
- 2. Software development
 - Adding features, speedups, & cluster compatibility